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In this paper, we present a method of decomposing a highly oscillatory wave field into a
sparse superposition of Gaussian beams. The goal is to extract the necessary parameters
for a Gaussian beam superposition from this wave field, so that further evolution of the
high frequency waves can be computed by the method of Gaussian beams. The methodol-
ogy is described for Rd with numerical examples for d ¼ 2. In the first example, a field gen-
erated by an interface reflection of Gaussian beams is decomposed into a superposition of
Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data
in the second example is not a superposition of a finite number of Gaussian beams. The
wave field to be approximated is generated by a finite difference method for a geometry
with two slits. The accuracy in the decomposition increases monotonically with the
number of beams.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

We consider the wave equation for x 2 Rd,
�u � @ttu� cðxÞDu ¼ 0; t > 0
u ¼ f ðxÞ; t ¼ 0 ð1Þ
@tu ¼ gðxÞ; t ¼ 0:
This equation is well posed in the energy norm,
kukE ¼
Z

Rd

1
cðxÞ jut j2 þ jruj2
� �

dx
� �1=2

;

where r is the gradient with respect to the spatial variables.
High frequency solutions to this equation are necessary in many scientific applications. While the equation has no scale,

‘‘high frequency” in this case means that there is a scale separation between the wave length and the domain of interest and
that the sound speed cðxÞ does not greatly vary on the scale of the oscillations. In such situations, direct discretization meth-
ods are notoriously computationally costly. To circumvent this, one often relies on asymptotically valid approximations such
as geometric optics [1], geometrical theory of diffraction [2], and Gaussian beams [3–7].
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To set notation and remind the reader of the high frequency methods that this paper is focused on, we briefly review geo-
metric optics and Gaussian beams. For a more detailed description of Gaussian beams with the similar notation, we refer the
reader to [8,9]. In the high frequency limit with k the large high frequency parameter, one can look for special solutions of the
wave equation that take the geometric optics form,
uðx; tÞ � aðx; tÞeik/ðx;tÞ: ð2Þ
Then, solving the wave equation is reduced to determining the amplitude function aðx; tÞ and the phase function /ðx; tÞ. Upon
substituting (2) into the wave equation and collecting like powers of k, one obtains the eikonal equation for the phase and
the transport equation for the amplitude,
j/t j
2 � cðxÞjr/j2 ¼ 0

2/tat � 2cðxÞr/ � ra ¼ �a�/:
In the method of geometric optics, these equations are solved by PDE techniques or by ODE ray tracing [1] for a real value
phase and amplitude. Alternatively, in the Gaussian beams method, one relaxes the conditions on / and a to allow them to
take on complex values and one expresses them as Taylor polynomials about a characteristic ray, ðXðsÞ; T ðsÞÞ, that originates
at some point ðy; 0Þ with ray parameter s:
/ðx; t; y; sÞ ¼ UðsÞ þUtðsÞðt � T Þ þrUðsÞ � ðx�XÞ þ 1
2
½ðx; tÞ � ðX ; T Þ� � Hess½U�ðsÞ½ðX ; T Þ � ðx; tÞ� ð3Þ

aðx; t; y; sÞ ¼ AðsÞ: ð4Þ
Here, Hess½U� is Hessian matrix of U (which includes the second order x and t derivatives) and the above coefficients are de-
fined through the ray tracing system of ODEs (using the shorthand notation s ¼ Ut ; n ¼ rU;M ¼ Hess½U� and _¼ d

ds):
_T ¼ 2s
_X ¼ �2cðxÞn
_s ¼ 0
_n ¼ jnj2rc
_U ¼ 0
_M ¼ �MDM �MB� BtM � C
_A ¼ �A�U
The matrices B, C, and D are ðdþ 1Þ � ðdþ 1Þ dimensional and defined as derivatives of pðx; t; n; sÞ ¼ jsj2 � cðxÞjnj2:
ðBÞkl ¼
@2p
@fk@zl

; ðCÞkl ¼
@2p
@zk@zl

; ðDÞkl ¼
@2p
@fk@fl

;

with z ¼ ðx; tÞ and f ¼ ðn; sÞ. Thus defined, / and a do not satisfy the eikonal and transport equation exactly, except on the
ray; nonetheless, u given by Eq. (2) will be an asymptotic solution of the wave equation (see [8,9]).

To obtain a Gaussian beam solution, one has to determine the Taylor coefficients and the initial beam center y. Note that
due to the relations between these coefficients that the eikonal equation (and its derivatives) provide, one only needs to
determine the derivatives that involve x to determine all of the coefficients (up to the sign of /t). Also, although in the
expression for / and a both s and t appear as separate parameters, they are related through the condition T ðsÞ ¼ t. What
makes this type of construction give a valid asymptotic solution to the wave equation is that the x derivative block of the
imaginary part of the Hessian matrix is a positive definite matrix. One can show that if this condition holds at t ¼ 0, it will
hold for all t, see [8]. This gives the name of the method, as at any given t the magnitude of the solution has a Gaussian shape.

Whether one uses geometric optics or Gaussian beams, an important fact to recognize is that the initial data for the wave
equation, f and g in Eq. (1), have to fit with the special form of the solution. For geometric optics we need the initial data to
top order in k to be of the form, f ðxÞ ¼ aðxÞ expðik/ðxÞÞ, with real valued phase /, while for Gaussian beams, we need it to be
f ðxÞ ¼ aðx; yÞ expðik/ðx; yÞÞ, where a and / given by Taylor expansions about y. To see the required form for g, one recognizes
that a and / are functions of t as well and differentiates.

Finally, one can exploit the linear nature of the wave equation by finding the solution for N different initial data. Adding
these together gives a solution to the wave equation with initial data given by the sum of their individual initial data. For the
case of Gaussian beams, this means that the solution we can obtain has initial data of the form,
XN

n¼1

anðx; ynÞeik/nðx;ynÞ:
In many applications, the available data is not typically in the form required for geometric optics or Gaussian beams. Thus we
need to re-represent it in the appropriate from. A common method is to represent the field using the Fourier transform, so
that it is in the form of an amplitude function times an exponential involving a phase [5,7]. This approach has some
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drawbacks as the number of distinct phases can be quite large, since this representation relies on strong cancellations to rep-
resent the field. One then has to propagate the field for every distinct phase, thus leading to a computationally complex
method. For geometrical optics, the authors of [10] give a method for decomposing a time harmonic wave field at a particular
point into several plane waves, which eliminates some of these difficulties. The method in [10] is related to our approach as
the authors also use the Fourier transform and look for maximums of a function to find the oscillation directions. They also
assume no knowledge of the number of distinct phases. However, our objectives differ, as we are aiming to have a represen-
tation of the entire field, not just at a single point. Also, our basic building blocks (ie the Gaussian beams) have more param-
eters that define them. For further references see [10].

For Gaussian beams, some work has also been done in this direction [11,12]. In [12], the author considers the related
problem of representing boundary data for the wave equation as a superposition of beam-like packets. The main tool is
to take an integral superposition of beam-like packets and then find under what assumptions the integral superposition
agrees with the given boundary data. In turn, these assumptions are used to determine the beam parameters. This results
in a collection of beams that propagate in all directions from every point. The method that we propose is formulated for
decomposing initial data, and the number propagation directions is governed by the complexity of the wave field and deter-
mined automatically by the algorithm. Similarly, in [11], the author considers a Gaussian beam decomposition of an initial
time harmonic field, however, the field is assumed to be separated into an amplitude and a phase.

In this paper, we propose a method for approximating the initial data ðf ; gÞ for the wave equation by a superposition of
Gaussian beams. Our task is to find the number of beams N and their parameters, so that with
wðx; tÞ ¼
XN

n¼1

anðx; t; ynÞeik/nðx;t;ynÞ;
the energy norm,
Z
Rd

1
cðxÞ jg �wtjt¼0j

2 þ jrðf �wjt¼0Þj
2

� �
dx

� �1=2

;

is small. We work in this norm, since the wave equation is well posed in it. We use the ‘‘energy” function,
F½u�ðx; tÞ ¼ 1
cðxÞ jut j2 þ jruj2; ð5Þ
and define the related inner product,
hu; viE ¼
Z

Rd

1
cðxÞut �v t þru � r�v
� �

dx:
The motivation behind this paper is the practical application of Gaussian beam techniques, for example, in exploration seis-
mology [5,4]. There are two important cases for which the methods of this paper apply. One case is the initialization of
Gaussian beams – given a wave field, its decomposition into Gaussian beams for computation of the wave field migration
imaging process. The other case, arises in simulations when the Gaussian beam approximation is not adequate in a small
region of the computational domain due to, for example, sharp local variations in the sound speed. The methods we derive
can be used for coupling Gaussian beams to a local approximation of finite difference or finite element type. These applica-
tions to exploration seismology will be presented in a forthcoming paper, [13].

2. Method

The method that we propose is iterative and the procedure can be summarized as follows. By performing calculations on
the wave field, we find an initial guess for the parameters that define a Gaussian beam. We then optimize these beam param-
eters locally with constraints to minimize the difference between the Gaussian beam and the wave field in the energy norm.
After subtracting the Gaussian beam from the wave field, we repeat the procedure with this new field with reduced energy.
The details of these steps are outlined below.

1. With n ¼ 1, let ðun;un
t Þ be the initial field at a fixed t.

2. Find a candidate Gaussian beam
� Estimate Gaussian beam center
– Let ~yn ¼ arg maxfF½un�ðyÞg (see Eq. (5)).

� Estimate propagation direction
– Let GðxÞ ¼ expð�kjx� ~ynj2=2Þ
– Let r~/n ¼ arg maxfjF½unðxÞGðxÞ�j þ jF½un

t ðxÞGðxÞ=k�jg, with F the Fourier transform, fx! kpg
– Let ~/n

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
cðynÞ

p
jr~/nj

� Let the second x-derivatives of ~/n;D2 ~/n, be
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– Let RefD2 ~/ng ¼ 0
– Let ImfD2 ~/ng ¼ I, with I the identity matrix
3. Minimize the difference between the Gaussian beam and un in the energy norm using ð~yn; ~/n
t ;r~/n;D2 ~/nÞ as the initial

Gaussian beam parameters.
� Subject to the constraints
– ImfD2/g is positive definite
– Entries of D2/ are less then

ffiffiffi
k
p

in magnitude
– 1=

ffiffiffi
k
p
6 jr/j 6

ffiffiffi
k
p

– j/t j
2 ¼ cðyÞjr/j2

Let

yn;/n
t ;r/n;D2/n

� �
¼ arg min un �< un;B>E

kBk2
E

B

					
					

2

E

8<
:

9=
;:

where B be the Gaussian beam defined by the initial parameters yn;/n
t ;r/n;D2/n

� �
and amplitude 1 (see Eqs. (2)–(4)).

� Let Bnðx; tÞ be the Gaussian beam defined by the initial parameters ðyn;/n
t ;r/n;D2/nÞ and amplitude 1.

� Let an ¼ hu
n ;BniE
kBnk2

E
.

4. Subtract the Gaussian beam field:
unþ1 ¼ un � anBn and unþ1
t ¼ un

t � anBn
t :
5. Repeat steps starting with step 2, until kunþ1kE is small.

We provide discussion and justification for these steps. Looking at the energy function (5) for a single Gaussian beam, we
see that it is a Gaussian distribution with variance 1/k and so, the effective range for a Gaussian beam is on the order of 1=

ffiffiffi
k
p

near its center y. Thus, if we want to represent the wave energy at a particular point, we need a Gaussian beam be centered in
a small neighborhood of it. Once we have localized near this point, only the local oscillation are relevant, thus we take the
Fourier transform of the field with a Gaussian weight and look for a maximum. This Fourier transform can be taken only
locally, thus it can be done efficiently. The estimated values for the Hessian come from the fact that we need the imaginary
part to be positive definite and that the coefficients are not allowed to be very big, as otherwise the premise of separation of
different scales that is necessary for the asymptotic expansion would be violated. Once we have determined the parameters
that define the phase function, we can define Bðx; tÞ ¼ aðtÞ expfik/ðx; tÞgwith að0Þ ¼ 1 and think of it as a basis function. The
appropriate coefficient for representing a field, u, with this function alone is
a ¼ hu;BiE
kBk2

E

: ð6Þ
We have to be a bit careful here, since the energy norm involves space and time derivatives of the field. However, upon
examining the ODEs that define the Gaussian beam, it is clear that aBðx; tÞ is indeed a Gaussian beam with the same phase
as Bðx; tÞ and amplitude equal to a at t ¼ 0.

Remark 1. One point that should be addressed is that the function F½u�ðxÞ can be small in at a point where it would be
advantageous to have a Gaussian beam center. Consider, as an example, the case of two beams with the same center y;r/
which are perpendicular, and amplitudes with opposite signs. At y, the two beams interfere destructively, making the energy
function small. For this reason, we need to use the argument maximum of the energy only as an estimate of the Gaussian
beam center. In this example, the two Gaussian beams will interfere constructively close to y leading to a good initial
estimate for the Gaussian beam centers.
Remark 2. In the simplified case, when the initial data is given in the geometrical optics form, u ¼ aðxÞeikwðxÞ and
ut ¼ kbðxÞeikwðxÞ, one can use stationary phase to show that the estimated oscillation direction r~/ agrees with the direction
rwðyÞ, which is used in [9]. Writing the phase / ¼ pðx� yÞ þ ijx� yj2=2 and taking a ¼ 1, we can define B to be the Gaussian
beam given by Eqs. (2)–(4). We are interested in choosing p, so that the inner product, hu;BiE, has the largest magnitude.
Rewriting this inner product using the eikonal equation, the main contribution (to highest order in k and order 0 in x� y) is:
Z

Rd
k2 ibðxÞ jpjffiffiffiffiffiffiffiffiffi

cðxÞ
p þ aðxÞrwðxÞ � p

 !
GðxÞeikðwðxÞ�p�xÞdx:
Stationary phase dictates that this integral will be largest when p ¼ rwðxÞ and since GðxÞ localizes x to y, we get p ¼ rwðyÞ.
Grouping the terms in a different way, one can think of this integral as the Fourier transform. From a numerical point of view,
differentiating the highly oscillatory field u has many disadvantages and w is unknown, which makes it hard to use the above
formula in practice. Thus, we use u and ut directly and rescale ut by a factor of 1/k to balance the terms. Since we only need an
estimate of p, we look at arg maxfjF½unðxÞGðxÞ�j þ jF½un

t ðxÞGðxÞ=k�jg instead of the above rather complicated expression.
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To determine the final Gaussian beam parameters, we minimize the energy norm difference between the Gaussian
beam and the wave field. This is a constrained minimization in high dimensional space – there are 11 parameters in
2D: There are 2 for y, 2 for r/, 6 for D2/, since it is complex valued and symmetric, and 1 for the sgnf/tg. The amplitude
a is not a parameter as it is defined though an inner product. In 3D, there are 19 parameters. The constraints are that the
imaginary part of D2/ has to be positive definite and that /t can be determined up to a sign by

ffiffiffiffiffiffiffiffiffi
cðyÞ

p
jr/j. We note that to

maintain the validity of the asymptotic expansion, the coefficients must not be too large. There are several ways to carry
out this constrained minimization numerically, including the Nelder–Mead method [14], which was used in the examples
below.

To improve the results one can also re-optimize the beams that have been previously extracted by the algorithm with the
addition of every new beam, by inserting one or both of the following steps before the ‘‘repeat” step in the above algorithm.

(a) If desired, readjust the previous beams with the addition of new beams

� For the jth beam, let w ¼ unþ1 þ ajBj and repeat step 3 with un ¼ w; n ¼ j, and ðyj;/j

t ;r/j;D2/jÞ as the initial Gauss-
ian beam parameters.

� Let unþ1 ¼ w� ajBj
(b) If desired, readjust all beam amplitudes together

� Let D be the matrix of inner products Djl ¼ hBl;BjiE, and bj ¼ hu1;BjiE
� Solve Da ¼ b and let unþ1 ¼ u1 �

Pn
j¼1ajBj
For Gaussian beams that represent general wave fields, the optimal results follow if the Gaussian beam parame-
ters for all beams are adjusted at the same time to minimize the energy difference. An optimization involving all
beam parameters is computationally prohibitive and the method steps (a) and (b) above can be seen as a practical
approximation to full optimization. One can think of step (a) as an alternating minimization step over beams that
overlap. Note that this step is not necessary for beams that are well separated. In the same sense, step (b) can
be thought of as an adjustment step that minimizes the energy using all of the amplitudes at the same time. It
is also the coefficient calculation in writing the wave field in the basis defined by the Gaussian beams in the energy
inner product.

2.1. Algorithm analysis

It is not obvious that the proposed minimization will lead to a global minimum. Thus, to examine this minimization in
greater detail, we consider the case when the initial wave field is given by a single Gaussian beam in 1D for the constant
coefficient wave equation. The analytic Gaussian beam solution is easily determined in this case as
a0eik n0ðx�x0	tÞþbðx�x0	tÞ2=2½ �:
We study the case of offsetting two beams and examining the difference in the wave fields. The second column of graphs
in Fig. 1 show the energy landscape in which we are minimizing as y varies (all other parameters are held constant at the
exact values of the initial wave field Gaussian beam). First, the Gaussian beam coefficient a is held constant and second, it
is defined by Eq. (6). As the graph shows, in the first case there are several local minima, while in the second case there is
only the global minimum. One can think of a as aligning the oscillations of the two beams, as the first column of graphs in
Fig. 1 shows. This shows why using Eq. (6) to define a is absolutely necessary. Note that with this choice of a, the energy
of the initial wave field minus the wave field of the Gaussian beam will never be greater than the energy of the initial
wave field. Thus, the energy difference between the wave field and the Gaussian beam, ie the quantity that we are min-
imizing, will be bounded from above and below. Furthermore, this difference approaches the energy of wave field as the
Gaussian beam parameters approach their limiting values. Therefore, the quantity that we are minimizing will have at
least one minimum.

One can carry out a similar analysis in 2D for the constant coefficient case as well, once again with an initial field given by
a single Gaussian beam. Appendix B gives the analytic Gaussian beam solution that we use in this analysis. For the sake of a
concrete example, we take the reasonable, yet arbitrary, Gaussian beam parameters for the initial field to be (see Appendix
B):
a0 ¼ 1; y ¼
0

0

" #
0; g ¼

1

0

" #
; s ¼ �1; b ¼

�0:9286þ 1:4121i 0:6983� 0:3363i

0:6983� 0:3363i 0:8680þ 0:6538i

" # !
:

Using this as the initial wave field that has to be decomposed, we can hold all parameters fixed, except for one and
examine the energy landscape that we are minimizing in, as we did in the 1D case with y. However, instead of hold-
ing the fixed parameters at their optimal values, we perturb them randomly by a number in [-.1,.1]. The resulting
energy landscape is shown in Fig. 2. As the graph shows, in each case there is only the global minimum. While this
does not prove that the global minimum is the only local minimum, it shows why the algorithm performs well in the
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Fig. 1. First graph shows the real parts of two Gaussian beams in 1D at a fixed time (the Gaussian envelopes are shown by dotted curves). Both Gaussian
beams have amplitude coefficients equal to 1. To the right, the graph shows the squared energy norm of the difference between the two Gaussian beams as
the location y of the second Gaussian beam in varies. The second row of graphs is the same as the first, except that the amplitude coefficient of the second
Gaussian beam is given by Eq. (6).

−0.5 0 0.5 1
0

50

100

150

200
Energy vs y

1

−0.5 0 0.5 1
0

50

100

150

200
Energy vs y

2

0.5 1 1.5 2
0

50

100

150

200
Energy vs η

1

−0.5 0 0.5 1
0

50

100

150

200
Energy vs η

2

−1.5 −1 −0.5 0
10

20

30

40
Energy vs Re{β   }

11

0 0.5 1 1.5
0

20

40

60

80
Energy vs Re{β   }

12

0.5 1 1.5 2
0

20

40

60

80
Energy vs Re{β   }

22

0.5 1 1.5 2
0

20

40

60
Energy vs Im{β

11
}

−1.5 −1 −0.5 0
0

50

100

150

200
Energy vs Im{β

12
}

0.5 1 1.5 2
0

50

100

150
Energy vs Im{β

22
}

Fig. 2. Plots of squared energy for two 2D Gaussian beams as each parameter for the second Gaussian beams is varied. As each parameter is varied, the rest
of the parameters are held at close (but not equal) to the ideal parameters. Each graph shows that the minimum with respect to one parameter is unique.
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numerical experiments. One interesting thing to note from the figure is the plot of energy versus Imfb12g. When
Imfb12g is every negative, the imaginary part of b is no longer positive definite. The effect of this is to force a to
be very small.
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3. Numerical examples

We give some examples to demonstrate the decomposition method in 2D. In all of the example, the high frequency
parameter k ¼ 50. For the energy norm minimization (step 2 in the algorithm) we use the Nelder–Mead method. We also
use the extended version of the algorithm that includes steps (a) and (b). To enforce the positive definiteness of ImfD2/g,
we use a penalty function, which is 0 on 1=

ffiffiffi
k
p

;
ffiffiffi
k
p� �

and large otherwise.

3.1. Transmission and reflection

In this example, we test the decomposition algorithm by decomposing a wave field that is obtained using the method of
Gaussian beams. The Gaussian beam method is used to compute the wave field for reflection and transmission in the wave
equation. In Appendix A, we give a derivation of Gaussian beam parameters for the reflected and transmitted Gaussian beam
in terms of the parameters of the incoming Gaussian beam, based only on the assumption that these three beams form a
solution to the wave equation in the weak sense. The appendix is included, since it has independent value and we did
not find the results in the literature, though some work in this direction was done by [15].

The experiment is performed using the initial condition given by the Gaussian beam coefficients,
Fig. 3.
evaluat
differen
a0 ¼ 1; y ¼
0
�0:5

� �
; r/ ¼

0
1

� �
; /t ¼ 1; D2/ ¼

0þ i 0
0 0þ i

� �� �
:

The sound speed is a function of x2 only and is equal to 3 for x2 < �1 and 1 otherwise. We evolve the field using the method
of Gaussian beams to t ¼ 1. Then, we decompose the field using the decomposition method and obtain two sets of coeffi-
cients, one set for the transmitted wave and one set for the reflected wave. The obtained coefficients for the transmitted
beam by the decomposition are
a0 ¼ 0:7198þ 0:4467i; y ¼
�1:8106E� 7
�1:8679

� �
;r/ ¼

8:4294E� 9
0:5774

� �
;

�

/t ¼ 1:0000; D2/ ¼
�0:4013þ 0:1982i 3:9776E� 7� 5:4452E� 7i

3:9776E� 7� 5:4452E� 7i �5:3503E� 7þ 0:3333i

� ��
;

and for the reflected beam are
a0 ¼ 0:2082þ 8:6211E� 2i; y ¼
�4:9143E� 8
�0:5000

� �
;r/ ¼

�1:0294E� 8
�1:0000

� �
;

�

/t ¼ 1:0000; D2/ ¼
�0:4999þ 0:5003i �2:4479E� 8� 7:5893E� 7i

�2:4479E� 8� 7:5893E� 7i 2:1258E� 7þ 1:0000i

� ��
:

The difference between these coefficients and the Gaussian beam method coefficients is on the order of 10�6. This difference
can be decreased by changing the stopping criteria for the Nelder–Mead method. The energy is very well represented by the
extracted beams, as expected since the coefficients are almost identical, see Fig. 3.
Wave fields and energy at t ¼ 1 for the reflection and transmission example. The Gaussian beam solution is denoted by uGB and the wave field
ed from the estimated Gaussian beam coefficients for the uGB wave field is denoted by uDGB . Note that the color scale for the 4th graph is very
t from the 1st graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Destructive interference

To test the ability of the algorithm to decompose complicated fields, we decompose a Gaussian beam field that exhibits
strong cancellations. This field is obtained as the sum of the following 8 Gaussian beams:
Fig. 4.
wave fi
of these
referred

Fig. 5.
destruc
a0 ¼ 
; y ¼
0
0

� �
; r/ ¼

	1
	1

� �
; /t ¼ 	

ffiffiffi
2
p

; D2/ ¼
0þ 0:75i 0

0 0þ 1:25i

� �� �
;

where every combination of ‘+’ and ‘�’ is taken and the ‘*’ is +1 if number of ‘�’s is even and �1 if the number of ‘�’s is odd.
Each of these beams is different, but they are chosen in such a way so that there is extreme cancellation. Using this super-
position of beams for the wave field ðf ; gÞ that has to be decomposed, one finds that at t ¼ 0, their sum f is 0, the real part of g
(the time derivative at t ¼ 0) is also 0. Thus all of the information is stored in the imaginary part of g. Fig. 4 shows the imag-
inary part of g and the energy function for this data. As one can see from the plot of the energy function, at the common
center (0,0), the beams cancel perfectly to give no energy. Thus, this should be a particularly difficult case for the algorithm,
since it uses the energy function for the initial placement of the beams.

The results of the decomposition are shown in Fig. 4. The algorithm correctly identifies that there are eight beams and
absorbs more than 99% of the energy. Fig. 5, shows the energy norm difference between the wave field and the extracted
Gaussian beam wave field versus the number of extracted beams.
3.3. Double slit

In this section, we show that even in the case of crossing waves when underlying wave field is not Gaussian beam in nat-
ure, the decomposition method succeeds in extracting a Gaussian beam representation of the waves. We use a second order
finite difference scheme with absorbing boundary conditions [16] to obtain the wave field to be decomposed. Fig. 6 shows
Wave field for the destructive interference experiment. The graphs show (from left to right) the imaginary part of g, the energy function for the initial
eld, the energy function of the wave field obtained from the superposition of the extracted Gaussian beams, and the energy function of the difference

two fields. Note that the color scale for each graph is different. (For interpretation of the references to color in this figure legend, the reader is
to the web version of this article.)
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Fig. 6. Wave field for the double slit experiment. The first plot shows the sound speed, then progressively from left to right, the plots show the real part of
the wave field at t ¼ 0:0;1:0 and 2.0.
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Fig. 7. Energy norm difference between the wave field and the extracted Gaussian beam wave field as a function of the number of extracted beams for the
double slit experiment.

Fig. 8. Gaussian beam wave fields for the double slit experiment. The top row shows (from left to right) the real part of the wave field from the finite
difference, the real part of the wave field obtained from the superposition of the extracted Gaussian beams, and the difference between these two fields. The
rest of the graphs are the individual Gaussian beam fields in order that the decomposition method extracted them (left to right, top to bottom). Note that
the color scale for each graph is different and that the domain for each graph is ½�2;2� � ½0:25;1:75�. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Gaussian beam wave energy function for the double slit experiment. The graphs show (from left to right) the energy function for the wave field from
the finite difference, the energy function of the wave field obtained from the superposition of the extracted Gaussian beams, and the energy function of the
difference of these two fields. Note that the color scale for the last graph is different and that the domain for each graph is ½�2;2� � ½0:25;1:75�. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the sound speed and the finite difference solution. At t ¼ 2:0, we take the solution in the rectangle ½�2;2� � ½0:25;1:75� and
apply the decomposition method to this part of the field. The algorithm terminates after 15 Gaussian beams have been ex-
tracted. With these beams, approximately 90% of the energy has been represented. The Gaussian beams are shown in Fig. 8
and the energy function is shown in Fig. 9. Fig. 7 shows the energy norm difference between the wave field and the extracted
Gaussian beam wave field versus the number of extracted beams.
3.4. Double slit with variable coefficients

We revisit the double slit example, but we change the sound speed to have a smooth, but randomly varying perturbation.
We show the decomposition method succeeds in extracting a Gaussian beam representation of the waves. As in the previous
examples, we use a second order finite difference scheme to obtain the wave field that is to be decomposed. Fig. 10 shows the
sound speed and the finite difference solution. As the figure shows, the waves in this example are more complicated. At
t ¼ 2:0, we take the solution in the rectangle ½�2;2� � ½0:25;1:75� and apply the decomposition method to this part of the
field. The algorithm is terminated when 15 Gaussian beams have been extracted. With 15 beams, approximately 80% of
Fig. 10. Wave field for the double slit experiment with variable sound speed. The first plot shows the sound speed, then progressively from left to right, the
plots show the real part of the wave field at t ¼ 0:0;1:0 and 2.0.
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Fig. 11. Energy norm difference between the wave field and the extracted Gaussian beam wave field as a function of the number of extracted beams for the
double slit experiment with variable coefficients.



Fig. 12. Gaussian beam wave fields for the double slit experiment with variable sound speed. The top row shows (from left to right) the real part of the
wave field from the finite difference, the real part of the wave field obtained from the superposition of the extracted Gaussian beams, and the difference
between these two fields. The rest of the graphs are the individual Gaussian beam fields in order that the decomposition method extracted them (left to
right, top to bottom). Note that the color scale for each graph is different and that the domain for each graph is ½�2;2� � ½0:25;1:75�. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Gaussian beam wave energy function for the double slit experiment with variable sound speed. The graphs show (from left to right) the energy
function for the wave field from the finite difference, the energy function of the wave field obtained from the superposition of the extracted Gaussian beams,
and the energy function of the difference of these two fields. Note that the color scale for the last graph is different and that the domain for each graph is
½�2;2� � ½0:25;1:75�. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the energy has been represented. By adding more beams, more of the energy could be represented. The Gaussian beams are
shown in Fig. 12 and the energy function is shown in Fig. 13. Fig. 11 shows the energy norm difference between the wave
field and the extracted Gaussian beam wave field versus the number of extracted beams.
4. Conclusion

We have presented a method for decomposing a high frequency wave field into a sparse superposition of Gaussian beams.
The selection principle for the Gaussian beam parameters is based on approximate minimization of the energy of the differ-
ence between the given wave field and the superposition of Gaussian beams. Both numerical examples that correspond to a
finite number of Gaussian beams and more general wave fields show the efficiency of the algorithm.
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Appendix A. Transmission and reflection of Gaussian beams

In this section, we consider the reflection and transmission problem for Gaussian beams. Previous work in this direction
has been done in [15]. This derivation is based solely on the weak formulation of the wave equation and the assumption that
there is an incoming, reflected and transmitted wave.

A.1. Weak formulation and the matching condition

We consider the wave equation in n space dimensions with a sound speed which is smooth up to either side of a co-
dimension 1 hypersurface, R, but fails to be smooth across it. We assume that this surface is implicitly defined by some
smooth function W,
R ¼ fx : WðxÞ ¼ 0; rWðxÞ–0g;
and that the sound speed cðxÞ is given by
cðxÞ ¼
c�ðxÞ for WðxÞ < 0
cþðxÞ for WðxÞ > 0



;

for cþ; c� 2 C1ðRnÞ. We work in the high frequency regime and treat this problem as a transmission–reflection problem.
Thus, we look for solutions of the wave equation
utt � cðxÞDu ¼ 0 in Rt � Rn
x ð7Þ
which consist of an incoming wave, a reflected wave, and a transmitted wave,
u ¼ uI þ uR for WðxÞ < 0
uT for WðxÞ > 0



; ð8Þ
locally near some point x0 2 R. For u to be a distribution solution of (7), we need the following equations to hold on R
uI þ uR ¼ uT ð9Þ
ruI � mþruR � m ¼ ruT � m;
for m normal to R.
In what follows, we will use the notation
fm ¼
Xn

j¼1

mjfxj
;

fmm ¼
Xn

j¼1

Xn

k¼1

mjfxjxk
mk;

rsf ¼ rf � fmm:
Now, we suppose that the three waves have the same form
uI ¼ AIeik/I ¼ a0I þ 1
k

a1I þ . . .þ 1

kN aNI

� �
eik/I

;

uR ¼ AReik/R ¼ a0R þ 1
k

a1R þ . . .þ 1

kN aNR

� �
eik/R

;

uT ¼ AT eik/T ¼ a0T þ 1
k

a1T þ . . .þ 1

kN aNT

� �
eik/T

;

with k large and the phases and amplitudes independent of k. Note that this independence of k and the matching condition
Eq. (9) force
/I ¼ /R ¼ /T
on R, see [17, Chapter 7, Section 7.2] for details and a physical interpretation. We assume that the incoming phase, /I , and
amplitudes, ajI are known and that AI is supported near x0. Furthermore, we assume that /I

mðx0Þ–0 and that uI is an asymp-
totically valid solution of (7) in WðxÞ < 0.

A.2. Construction of the incoming, reflected and transmitted beams

We proceed as in the method of geometric optics. Substituting the form of the solution into the wave equation and equat-
ing powers of k, we get that each of the three phases /I;/R and /T has to satisfy the eikonal equation,
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j/t j
2 � cðxÞjr/j2 ¼ 0;
in the appropriate domain. Since /I ¼ /R ¼ /T on R, all of the tangential and time derivatives of the three phases will agree
on R. Thus, after substituting, we have that on R,
j/R
m j

2 ¼ j/I
mj

2

j/T
m j

2 ¼ c�j/I
mj

2 � ðcþ � c�Þjrs/Ij2

cþ
: ð10Þ
Since r/ gives the direction of propagation, to have a reflected wave and a transmitted wave, we need
/R
m ¼ �/I

m

/T
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�j/I

mj
2 � ðcþ � c�Þjrs/Ij2

cþ

s
:

These expressions give us the last piece of information necessary to solve the eikonal equations locally for /R and /T by the
method of characteristics. Also they determine the Hessian matrices of /R and /T except for /R

mm and /T
mm on R. We can obtain

this last part by differentiating the eikonal equations in the m direction. For each of the phases,
2/t/tm � 2crs/ � rs/m � 2c/m/mm � cmjr/j2 ¼ 0;
which gives,
/mm ¼
2/t/tm � cmðxÞjr/j2 � 2crs/ � rs/m

2c/m
: ð11Þ
Similarly, we can compute higher derivatives of the phases on R.
Now, we look at the amplitudes. To top order in k:
a0I þ a0R ¼ a0T

a0I/I
m þ a0R/R

m ¼ a0T/T
m : ð12Þ
Since we have already determined the m derivatives of the phases on R, these equations can be used to obtain a0R and a0T on
R, which serve as an initial condition for the transport equations for the highest order reflected and transmitted amplitudes:
2/ta
0
t þ /tta

0 � cðxÞa0
M/� 2cðxÞr/ � ra0 ¼ 0: ð13Þ
As in the case for the phases, we have local existence for the amplitudes, and as before we can determine the derivatives of
the amplitudes on R by differentiating Eq. (12) and the transport Eq. (13).

The next order amplitudes satisfy
a1I þ a1R ¼ a1T

a1I/I
m þ a0I

m þ a1R/R
m þ a0R

m ¼ a1T/T
m þ a0T

m ; ð14Þ

which again give the necessary initial conditions for the next order transport equations. In this fashion, we can continue until
we have determined the amplitudes up to order N; thus constructing a local asymptotic solution of (7) of the form (8). We
remark that these equations provide the necessary initial conditions for the construction global Gaussian beam solutions of
the form (8). There is only one technical point that needs to be addressed. Since Gaussian beams determine the amplitude
and phase functions up to high order in k, the matching conditions (9) will only be satisfied to a high order in 1/k. This is not
enough however, since for the form (8) to be a weak solution of the wave Eq. (7) the matching condition has to hold exactly.
To correct this, we take the difference between the wave field for W < 0 and W > 0 on R and extend it smoothly to a function
on all of Rn. This function can then be added to the Gaussian beam solution to make it a true weak solution of the wave equa-
tion. This function will not affect the asymptotics as it is of high order in 1/k.

A.3. Snell’s law, total internal reflection, reflection and transmission coefficients

The purpose of this sub-section is twofold. First, we apply the general construction of the previous section to a specific
case that is used to generate the wave field in reflection and transmission example. Second, to demonstrate the completeness
of this particular treatment of an incoming, reflected and transmitted Beams. By simply assuming this form of the solution
and requiring that it is a weak solution to the wave equation, one can recover such classical results as Snell’s Law, angle of
total internal reflection and the reflection and transmission coefficients without the need to rely on any physical intuition or
heuristic arguments.

Suppose that
cðxÞ ¼
c� for xn < 0
cþ for xn > 0



:
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Thus, m points in the xn direction and R is the hyperplane xn ¼ 0. Let r0 be the gradient in x1; . . . ; xn�1 and compute
/R
xn
¼ �/I

xn

/T
xn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� � cþÞjr0/Ij2 þ c�j/I

xn
j2

cþ

s
;

for xn ¼ 0. Note that the incoming, reflected and transmitted waves lie in the same plane (see Fig. 14). We calculate:
sinðhIÞ ¼ jr
0/Ij

jr/Ij

sinðhRÞ ¼ jr
0/Rj

jr/Rj
¼ jr

0/Ij
jr/Ij

¼ sinðhIÞ

sinðhTÞ ¼ jr
0/T j

jr/T j
¼

ffiffiffiffiffi
cþ

c�

r
jr0/Ij
jr/Ij

¼
ffiffiffiffiffi
cþ

c�

r
sinðhIÞ:
Thus, we have obtained the familiar ‘‘angle of incidence equals angle of reflection” and Snell’s law:
hR ¼ hI

sinðhTÞffiffiffiffiffi
cþ
p ¼ sinðhIÞffiffiffiffiffi

cþ
p :
Total internal reflection occurs when /T
xn

is complex, as in that case the transmitted wave just decays exponentially in xn:
ðc� � cþÞjr0/Ij2 þ c�j/I
xn
j2

cþ
6 0

c�jr/Ij2 6 cþjr0/Ij2ffiffiffiffiffi
c�

cþ

r
6 sinðhIÞ:
Thus the critical angle for total internal reflection is
arcsin
ffiffiffiffiffi
c�

cþ

r� �
:

Note that for total internal reflection to occur c� < cþ.
The reflection and transmission coefficients measure what fraction of the incident amplitude is transmitted and what

fraction is reflected. From (12), we readily compute:
a0R ¼
/I

xn
=/T

xn
� 1

1þ /I
xn
=/T

xn

a0I � Ra0I

a0T ¼ 2
1þ /T

xn
=/I

xn

a0I � Ta0I:
At normal incidence (i.e. jr/Ij2 ¼ j/I
xn
j2), the transmission and reflection coefficients become
Fig. 14. Incoming, reflected and transmitted Gaussian beams.
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c�

p
� 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ=c�

p ¼
ffiffiffiffiffi
cþ
p

�
ffiffiffiffiffi
c�
pffiffiffiffiffi

c�
p

þ
ffiffiffiffiffi
cþ
p

T ¼ 2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c�=cþ

p ¼ 2
ffiffiffiffiffi
cþ
p

ffiffiffiffiffi
c�
p

þ
ffiffiffiffiffi
cþ
p :
Appendix B. Analytic Gaussian beams solutions of the constant coefficient wave equation

For the constant coefficient wave equation, one can find analytic Gaussian beam solutions, since the ordinary differential
equations that define the beam have a simple form. In 1D, since any function of x� t or xþ t will satisfy the wave equation,
any Gaussian beam solution can be written as
a0eik n0ðx�x0	tÞþbðx�x0	tÞ2=2½ �;
where a0; x0; n0 and b are the parameters that define the Gaussian beam (note that Imfbg has to be greater then 0).
In 2D, we can also derive the analytic solution. We begin by looking at the equations that define the characteristic rays. In

the 2D constant coefficient ðcðxÞ ¼ 1Þ, the ray tracing system of ODEs will have the following solution:
T ðsÞ ¼ 2ss

XðsÞ ¼ �2gsþ y

sðsÞ ¼ 	jgj
nðsÞ ¼ g;
where s is the ray parameter, g ¼ ðg1;g2Þ is the initial r/ and y ¼ ðy1; y2Þ is the initial Gaussian beam center. The eikonal
equation gives s ¼ 	jgj. As expected, the characteristic rays are straight lines. Since T ðsÞ ¼ t, we have s ¼ t=ð2sÞ and thus
the characteristic rays can be expressed as functions of time.

With the aid of Mathematica, one can also solve the ODEs that define D2/ along the characteristics,
M11ðtÞ ¼
tb2

12g2
1 þ b11s3 � tb11b22g2

1

s3 � t b11g2
2 � 2b12g1g2 þ b22g2

1

� �
M12ðtÞ ¼

tb2
12g1g2 þ b12s3 � tb11b22g1g2

s3 � t b11g2
2 � 2b12g1g2 þ b22g2

1

� �
M22ðtÞ ¼

tb2
12g2

2 þ b22s3 � tb11b22g2
2

s3 � t b11g2
2 � 2b12g1g2 þ b22g2

1

� � ;

where the subscripts denote the type of second derivative coefficient (M12 is the @x1@x2-derivative) and b is the initial Hes-
sian matrix D2/. Note that Imfbg must be a positive definite matrix.

Similarly, one computes the amplitude of the Gaussian beam:
AðtÞ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3

s3 � t b11g2
2 � 2b12g1g2 þ b22g2

1

� �
s

;

with the branch of the square root taken so that Að0Þ ¼ a0.
Thus we have expressed the Gaussian beam as function of ðx1; x2; tÞ with parameters ða0; y;g; bÞ and the sign of s:
AðtÞeik g�ðx�XðtÞÞþ1
2 M11ðtÞðx1�X1ðtÞÞ2þ2M12ðtÞðx1�X1ðtÞÞðx2�X2ðtÞÞþM22ðtÞðx2�X2ðtÞÞ2ð Þ½ �;
with the abuse of notation, XðtÞ ¼ �gt=sþ y.
Finally, we note that in the case parameters given by
a0 ¼ 1; y ¼
0
0

� �
;g ¼

0
1
2

" #
; s ¼ �1

2
;b ¼

ia 0
0 ib

� � !
;

this solution reduces to the special solution derived in [8],
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 2iat

r
exp ik

1
2
ðx2 � tÞ þ 1

2
ibðx2 � tÞ2 þ iaþ 2a2t

1þ 4a2t2 x2
1

� �� �� �
:
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